Nasal and palatal surgery for obstructive sleep apnea syndrome

B. Tucker Woodson, MD, FACS, ABSM

Department of Otolaryngology and Human Communication, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA

Sleep disordered breathing is common. In the mildest form, it manifests as snoring which is often considered a cosmetic complaint. Sleep-related breathing disturbances increase in severity to include the upper airway resistance syndrome and obstructive sleep apnea syndrome (OSAS) which result in daytime sleepiness, and have established medical morbidity and mortality risks. Overt OSAS affects an estimated 4% of men and 2% of women [1]. Because of its significant social, functional, and medical morbidity, OSAS frequently presents for treatment. Nasal continuous positive airway pressure (nasal CPAP) has become the preferred initial treatment for most patients; when this or other conservative treatments fail, however, surgery may be offered. Surgery may bypass the upper airway obstruction or may reconstruct the upper airway using either skeletal or soft tissue techniques. It is commonly accepted that airway obstruction in OSAS is complex and, in most patients, multiple levels of the pharynx contribute to collapse, obstruction, and increased airway resistance [2,3]. Surgical goals are to increase airway size, decrease airway collapsibility, decrease airway resistance and the work of breathing, and reduce partial and complete airway obstructions (apnea and hypopnea). Improved ventilation reduces sleep and medical manifestations of OSAS. Nasal and palatal surgeries may contribute to these goals and are part of the surgical treatment armamentarium for OSAS. Although in some patients, nasal and palatal surgeries may be used in isolation, for many patients these procedures are only a portion of the treatment. Palatal and nasal surgeries are more often used in isolation for the treatment of snoring of palatal etiology [4]. Primary snoring is a common and significant presenting complaint, and a concern of many patients. This chapter addresses specific surgical procedures that may treat upper pharyngeal and palatal airway obstruction.

Algorithms for treatment

A variety of surgical algorithms have been described to treat both snoring and OSAS. Historically, surgery on the nose, upper pharynx, and palate were considered to treat OSAS. Fujita proposed uvulopalatopharyngoplasty (UPPP) as the first specific reconstructive procedure for OSAS [5]. UPPP was a modification of palatopharyngoplasty proposed by Ikamatsu for snoring prior to the recognition of OSAS [6]. Prior to this description, tonsillectomy and nasal surgery were proposed as treatments with limited success in most patients. Uvulopalatoplasty was described by Kamami for the treatment of snoring [7]. Laser-assisted uvula-palatoplasty (LAUP) has multiple modifications and subsequently was applied to the treatment of OSAS [8]. Aggressive UPPP or alternative UPPP techniques have also been described [9].

Two different approaches have been used to improve success of limited pharyngeal surgeries for OSAS. The first approach is to improve patient selection with the goal of eliminating patients at high risk of failure [10]. Patients conceivably at high risk of failure may be those with severe disease, marked obesity, neurologic abnormalities, and sites of obstruction not
confined to the nose and palate. The second approach has been to combine palatal surgeries with nasal surgery and tongue base surgery to address multiple sites or more severe obstruction better [11]. Both approaches have modestly improved success rates [12]. Although success is not ideal and requires improvement, such an approach often balances the severity of the disorder, improved clinical outcomes, and acceptance by the patient unwilling to proceed with more aggressive and more successful approaches such as maxillo-mandibular surgery or tracheotomy.

It is widely accepted that upper airway collapse in OSAS occurs in the soft tissue supra-laryngeal pharynx [13]. The site of obstruction varies both between patients and even in the same patient depending on sleep state and body position. Various methods using endoscopy, manometry, and airway imaging have attempted to define the location of pathology. Nasal obstruction has been associated with complaints of poor sleep, snoring, and OSAS [14–16]. Nasal airflow has been shown to stimulate ventilation during sleep [17].

Surgical treatment

Nasal

Treatment of nasal obstruction varies according to pathology. Septal deviation, inferior turbinate hypertrophy, nasal valve collapse, and nasal polyps are common causes of nasal obstruction. In sleep apnea as well as other disorders with abnormal facial structure, increased nasal resistance may reflect abnormal maxillary morphology [18]. Although nasal airway resistance does not alter static measures of pharyngeal pressure when applying nasal CPAP, nasal obstruction may impair the clinical acceptance of CPAP [19]. Surgical treatment of obstruction may decrease clinically effective nasal CPAP pressures and theoretically improve compliance and acceptance [20]. Treatment of nasal obstruction improves daytime and nighttime subjective quality of life, sleep, and daytime performance. Although successful surgical treatment of the nose may alleviate symptoms, surgery alone offers a low likelihood of definitive OSAS treatment. Nasal surgery, however, may be definitive in selected patients. In a study using lateral cephalometric X rays to define upper airway abnormalities, Series found those patients likely to benefit most had mild OSAS, dramatic obstruction, and no other upper airway pathologies [21].

Nasal procedures may include sepatoplasty, turbinate reduction, nasal valve surgeries, or sinus surgery. Techniques and procedures will vary on the pathology present. Under limited circumstances, nasal surgery may be simultaneously performed with other pharyngeal surgeries. Controversy exists as to the safety of performing simultaneous nasal and other pharyngeal surgeries [22]. Which sleep apnea surgeries are safe to pursue combined with nasal surgery has not been established. Criteria to consider include but are not limited to: (1) mild OSAS, (2) no anticipated requirement of nasal packing that would preclude perioperative nasal CPAP, (3) no major medical comorbidity that will place the patient at risk, and (4) appropriate and skilled postoperative monitoring and observation.

Tonsillectomy

Tonsil hypertrophy is a common contributor to OSAS in children; however, in adults, it is uncommon. It is commonly accepted that tonsillectomy alone is not definitive for most adults with OSAS. But when tonsilar hypertrophy is present, surgical treatment may be definitive. Verse et al reported an 80–100% success rate in adults treated for marked tonsil hypertrophy [23]. Tonsilar hypertrophy treated simultaneously with UPPP also demonstrates higher success rates [24]. Some authors have suggested that, when performed with tonsillectomy, UPPP has higher success rates [25]. Reviews by Sher et al have not been able to confirm this hypothesis [12].

Uvulopalatopharyngoplasty

UPPP was initially described by Fujita [5]. For many, the concept of “surgery for OSA” is UPPP. Many have subsequently modified UPPP; all methods have in common a reconstructive operation to enlarge the pharynx for treating OSAS. This is in contrast with other techniques of palatopharyngoplasty that are directed at narrowing or closing the incompetent pharynx such as with cleft palate or velopharyngeal incompetence. Fujita’s initial operation involved partial modification of the uvula, removal of redundant pharyngeal and palatal tissues, and primary closure of the posterior and anterior pillars to enlarge the retropalatal airway. Other modifications have involved complete removal of the uvula and distal soft palate, removal of portion of the palatopharyngeus muscle [26], and an uvulapalatal flap [27].

Historically, UPPP offered the first viable alternative to tracheotomy; however, for many patients UPPP alone was at best partially effective. Although major complications are uncommon, minor complica-
tions and side effects are not infrequent [28]. Meta-
analysis by Sher et al observed that in nonselected
patients short-term success was 40.2%. This success
decreased to 5% when tongue base obstruction was
identified. Multiple authors have attempted to
 improve UPPP success by improving patient selec-
tion. Success has been variable, yet some techniques
have been promising. Isono et al using an objective
endoscopic method have demonstrated higher success
rates [29]. Manometry during sleep has also demon-
strated high success rates [30]. Wide applicability is
lacking to corroborate these results. UPPP data is
difficult to interpret because of incomplete follow-
up, lack of standardized outcomes, and few controlled
or randomized studies [31]. Such deficiencies, how-
ever, are not unique in the surgical literature as a
whole. Important outcomes following surgery include
survival, sleepiness, performance, snoring, complica-
tions, and long-term results.

Overall data with UPPP is consistent with a
positive clinical effectiveness. Studies indicate that
 survival with UPPP is not worse than with nasal CPAP
[32]. Sleepiness using multiple sleep latency testing is
equal to compliant CPAP patients [33]. Driving per-
formance is improved over both the short and long
term [34]. Short-term snoring improvement occurs
[35]. Studies have also demonstrated long-term
 improvement without worsening of OSAS. Concern
about UPPP and subsequent CPAP failure has been
presented [36]. Increased mouth leaks after palatal
shortening is a potential complication, however; its
true incidence is unknown. In some patients, removal
of pharyngeal redundancy may improve CPAP com-
pliance and effectiveness. Further study is needed.

Few prospective randomized studies exist. Studies
comparing UPPP with conservative treatments show
marked improvements in sleep and quality of life
[37]. Final quality of life outcomes were similar to
nasal CPAP in compliant patients. Objective respira-
 tory outcomes demonstrated significant improve-
ments, although final outcomes were less than in
laboratory success of nasal CPAP. Randomized
against oral appliances, UPPP demonstrated better
or equivalent outcomes [38].

Laser-Assisted Uvulopalatoplasty

LAUP was initially described by Kamami for
 snoring and subsequently applied to treat OSAS.
LAUP results have been controversial with strong
proponents and opponents. Limited data exists to
determine effectiveness for the treatment of OSAS.
Several laser techniques have been described. Initially,
LAUP was performed as a serial procedure over many
sessions. Palatal trenches were created parallel to the
uvula into the soft palate. The uvula was then short-
ened, and the wound allowed to heal by secondary
intention. Subsequent modifications involved more
aggressive resection of the soft palate and posterior
tonsilar pillars [39]. Single stage LAUP has also been
described [40]; other modifications include removal of
apalatal and uvular mucosa and uvula shortening [41].
These palatal stripping procedures have subsequently
been described as using electrocautery (cautery as-
sisted palatal stripping) and injection snoreplasty
[42]. In the latter procedure, mucosa is ablated using
sclerotherapy agents injected into the submucosa.

Objective evaluation of LAUP is difficult. Few
studies use objective respiratory data. Subjective
outcomes are often nonstandardized and primarily
relate to snoring as a primary outcome. Most studies
report a marked improvement in snoring. Short-term
success rates of 70% or greater have been reported.
Some decrement over time is likely. Effects on OSAS
are more controversial. Some reports suggest a 30–
40% success rate [43]. Other reports raise concern
about airway stenosis or potential worsening of
OSAS [44,45]. Outcomes may likely differ according
to surgical technique used and the surgical patient
population. Further objective evaluation is required.

Radiofrequency

Radiofrequency tissue ablation with or without
temperature control has been described for treatment
of both snoring and OSAS. These are discussed in
other articles.

Transpalatal advancement

A novel approach to palatopharyngoplasty is the
transpalatal advancement approach [46]. This modi-
fication increases oropharyngeal size not only by
reducing distal pharyngeal redundancy but by palatal
advancement. Separating the soft and hard palate and
excising distal palatine bone provide advancement.
The soft plate is mobilized and advanced into the
defect. Compared with UPPP, significant increases in
cross-sectional area and decreases in pharyngeal
collapsibility are observed [47]. In small series,
significant improvement in OSAS is observed.

Summary

Significant abnormalities of the nose and upper
pharynx contribute to OSAS and primary snoring.
Surgical correction may significantly improve these
disorders. Although when used alone, nasal surgery is only partially successful, it is an important component in the surgical armamentarium. Improvements in methods and surgical selection of palatal surgery are needed. Considering that the upper pharynx is the airway segment most vulnerable to closure, improving the surgical approach to this area likely will increase surgical success.

References

